Welcome!

Video Authors: Elizabeth White, Yakov Fain, Liz McMillan, Dan Ristic, Jnan Dash

Related Topics: @DXWorldExpo, @CloudExpo, @ThingsExpo

@DXWorldExpo: Blog Feed Post

Golden State Warriors Analytics Exercise | @BigDataExpo #BigData #Analytics

Identifying and quantifying variables that might be better predictors of performance

For a recent University of San Francisco MBA class, I wanted to put my students in a challenging situation where they would be forced to make difficult data science trade-offs between gathering data, preparing the data and performing the actual analysis.

The purpose of the exercise was to test their ability to “think like a data scientist” with respect to identifying and quantifying variables that might be better predictors of performance. The exercise would require them to:

  • Set up a basic analytic environment
  • Gather and organize different data sources
  • Explore the data using different visualization techniques
  • Create and test composite metrics by grouping and transforming base metrics
  • Create a score or analytic model that supports their recommendations

I gave them the links to 10 Warrior games (5 regulation wins, 3 overtime losses and 2 regulation losses) as their starting data set.

I then put them in a time boxed situation (spend no more than 5 hours on the exercise) with the following scenario:

You have been hired by the Golden State Warriors coaching staff to review game performance data to identify and quantify metrics that predict a Warriors victory

Here were the key deliverables for the exercise:

  1. I wanted a single, easy-to-understand slide with in-game and/or player recommendations.
  2. I wanted a break out of how they spent their 5 hours across the following categories:
  • Setting up your analytic environment
  • Gathering and organizing the data
  • Visualizing and analyzing the data
  • Creating the analytic models and recommendations
  1. Finally, I wanted back-up information (data, visualizations and analytics) in order to defend their in-game and/or player recommendations.

Exercise Learnings
Here is what we learned from the exercise:

Lesson #1: It’s difficult to not spend too much time gathering and cleansing data. On average, the teams spent 50% to 80% of their time gathering and preparing the data. That only left 10% to 20% of their time for the actual analysis. It’s really hard to know when “good enough” is really “good enough” when it comes to gathering and preparing the data.

Lesson #2: Quick and dirty visualizations are critical in understanding what is happening in the data and establishing hypotheses to be tested. For example, the data visualization in Figure 1 quickly highlighted the importance of offensive rebounds and three-point shooting percentage in the Warriors’ overtime losses.

Figure 1: Use Quick Data Visualizations to Establish Hypotheses to Test

Lesson #3: Different teams came up with different sets of predictive variables. Team #1 came up with Total Rebounds, Three-Point Shooting %, Fast Break Points and Technical Fouls as the best predictors of performance. They tested a hypothesis that the more “aggressive” the Warriors played (as indicated by rebounding, fast break points and technical fouls), the more likely they were to win (see Figure 2).

Figure 2: Testing Potential Predictive Variables

Team #2 came up with the variables of Steals, Field Goal Percentage and Assists as the best predictors of performance (see Figure 3).

Figure 3: ANOVA Table for Team #2

Team #2 then tested their analytic models against two upcoming games: New Orleans and Houston. Their model accurately predicted not only the wins, but the margin of victory fell within their predicted ranges. For example in the game against New Orleans, their model predicted a win by 21 to 30 points, in which the Warriors actually won by 22 (see Figure 4).

Figure 4: Predicting Warriors versus New Orleans Winner

And then in the Houston game, their model predicted a win by 0 to 10 points (where 0 indicated an overtime game), and the Warriors actually won that game by 9 points (see Figure 5).

Figure 5: Predicting Warriors versus Houston Winner

I think I’m taking Team #2 with me next time I go to Vegas!

By the way, in case you want to run the exercise yourself, Appendix A lists the data sources that the teams used for the exercise. But be sure to operate under the same 5-hour constraint!

Summary
A few other learnings came out of the exercise, which I think are incredibly valuable for both new as well as experienced data scientists:

  • Don’t spend too much time trying to set up the perfect analytic environment. Sometimes a simple analytic environment (spreadsheet) can yield consider insights with little effort.
  • Start with small data sets (10 to 20GB). That way you’ll spend more time visualizing and analyzing the data and less time trying to gather and prepare the data. You’ll be able to develop and test hypotheses much more quickly with the smaller data sets running on your laptop, which one can stress test later using the full data set.
  • Make sure that your data science team collaborates closely with business subject matter experts. The teams that struggled in the exercise were the teams that didn’t have anyone who understood the game of basketball (not sure how that’s even possible, but oh well).

One of the many reasons why I love teaching is the ability to work with students who don’t yet know what they can’t accomplish. In their eyes, everything is possible. Their fresh perspectives can yield all sorts of learnings, and not just for them. And yes, you can teach an old dog like me new tricks!

Appendix A:  Exercise Data Sources
Extract “Team Stats” from the Warriors Game Results website: http://www.espn.com/nba/team/schedule/_/name/gs.  Listed below is a cross-section of games from which you may want to use to start your analysis.

Wins

Rockets 1/20/17: http://www.espn.com/nba/matchup?gameId=400900067

Thunder 1/18/17: http://www.espn.com/nba/matchup?gameId=400900055

Cavaliers 1/16/17: http://www.espn.com/nba/matchup?gameId=400900040

Raptors 11/16/16: http://www.espn.com/nba/matchup?gameId=400899615

Trailblazers 1/2/17:  http://www.espn.com/nba/matchup?gameId=400900139

Overtime (Losses)

Houston 12/1/16: http://www.espn.com/nba/matchup?gameId=400899436

Grizzles 1/6/17: http://www.espn.com/nba/matchup?gameId=400899971

Sacramento 2/4/17: http://www.espn.com/nba/matchup?gameId=400900169

Losses

Spurs 10/25/16: http://www.espn.com/nba/boxscore?gameId=400899377

Lakers 11/4/16: http://www.espn.com/nba/matchup?gameId=400899528

Cavaliers 12/25/16: http://www.espn.com/nba/matchup?gameId=400899899

Note: You are welcome to gather team and/or individual stats from any other games or websites that you wish.

The post Golden State Warriors Analytics Exercise appeared first on InFocus Blog | Dell EMC Services.

Read the original blog entry...

More Stories By William Schmarzo

Bill Schmarzo, author of “Big Data: Understanding How Data Powers Big Business” and “Big Data MBA: Driving Business Strategies with Data Science”, is responsible for setting strategy and defining the Big Data service offerings for Hitachi Vantara as CTO, IoT and Analytics.

Previously, as a CTO within Dell EMC’s 2,000+ person consulting organization, he works with organizations to identify where and how to start their big data journeys. He’s written white papers, is an avid blogger and is a frequent speaker on the use of Big Data and data science to power an organization’s key business initiatives. He is a University of San Francisco School of Management (SOM) Executive Fellow where he teaches the “Big Data MBA” course. Bill also just completed a research paper on “Determining The Economic Value of Data”. Onalytica recently ranked Bill as #4 Big Data Influencer worldwide.

Bill has over three decades of experience in data warehousing, BI and analytics. Bill authored the Vision Workshop methodology that links an organization’s strategic business initiatives with their supporting data and analytic requirements. Bill serves on the City of San Jose’s Technology Innovation Board, and on the faculties of The Data Warehouse Institute and Strata.

Previously, Bill was vice president of Analytics at Yahoo where he was responsible for the development of Yahoo’s Advertiser and Website analytics products, including the delivery of “actionable insights” through a holistic user experience. Before that, Bill oversaw the Analytic Applications business unit at Business Objects, including the development, marketing and sales of their industry-defining analytic applications.

Bill holds a Masters Business Administration from University of Iowa and a Bachelor of Science degree in Mathematics, Computer Science and Business Administration from Coe College.

IoT & Smart Cities Stories
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...
DXWorldEXPO LLC, the producer of the world's most influential technology conferences and trade shows has announced the 22nd International CloudEXPO | DXWorldEXPO "Early Bird Registration" is now open. Register for Full Conference "Gold Pass" ▸ Here (Expo Hall ▸ Here)
@DevOpsSummit at Cloud Expo, taking place November 12-13 in New York City, NY, is co-located with 22nd international CloudEXPO | first international DXWorldEXPO and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time t...
CloudEXPO New York 2018, colocated with DXWorldEXPO New York 2018 will be held November 11-13, 2018, in New York City and will bring together Cloud Computing, FinTech and Blockchain, Digital Transformation, Big Data, Internet of Things, DevOps, AI, Machine Learning and WebRTC to one location.
The best way to leverage your Cloud Expo presence as a sponsor and exhibitor is to plan your news announcements around our events. The press covering Cloud Expo and @ThingsExpo will have access to these releases and will amplify your news announcements. More than two dozen Cloud companies either set deals at our shows or have announced their mergers and acquisitions at Cloud Expo. Product announcements during our show provide your company with the most reach through our targeted audiences.
Machine Learning helps make complex systems more efficient. By applying advanced Machine Learning techniques such as Cognitive Fingerprinting, wind project operators can utilize these tools to learn from collected data, detect regular patterns, and optimize their own operations. In his session at 18th Cloud Expo, Stuart Gillen, Director of Business Development at SparkCognition, discussed how research has demonstrated the value of Machine Learning in delivering next generation analytics to impr...
The challenges of aggregating data from consumer-oriented devices, such as wearable technologies and smart thermostats, are fairly well-understood. However, there are a new set of challenges for IoT devices that generate megabytes or gigabytes of data per second. Certainly, the infrastructure will have to change, as those volumes of data will likely overwhelm the available bandwidth for aggregating the data into a central repository. Ochandarena discusses a whole new way to think about your next...
The hierarchical architecture that distributes "compute" within the network specially at the edge can enable new services by harnessing emerging technologies. But Edge-Compute comes at increased cost that needs to be managed and potentially augmented by creative architecture solutions as there will always a catching-up with the capacity demands. Processing power in smartphones has enhanced YoY and there is increasingly spare compute capacity that can be potentially pooled. Uber has successfully ...
Chris Matthieu is the President & CEO of Computes, inc. He brings 30 years of experience in development and launches of disruptive technologies to create new market opportunities as well as enhance enterprise product portfolios with emerging technologies. His most recent venture was Octoblu, a cross-protocol Internet of Things (IoT) mesh network platform, acquired by Citrix. Prior to co-founding Octoblu, Chris was founder of Nodester, an open-source Node.JS PaaS which was acquired by AppFog and ...
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-c...